Acceleration of Preconditioned Krylov Solvers for Bubbly Flow Problems
نویسندگان
چکیده
We consider the linear system arising from discretization of the pressure Poisson equation with Neumann boundary conditions, derived from bubbly flow problems. In the literature, preconditioned Krylov iterative solvers are proposed, but they often suffer from slow convergence for relatively large and complex problems. We extend these traditional solvers with the so-called deflation technique, that accelerates the convergence substantially and has favorable parallel properties. Several numerical aspects are considered, such as the singularity of the coefficient matrix and the varying density field at each time step. We demonstrate theoretically that the resulting deflation method accelerates the convergence of the iterative process. Thereafter, this is also demonstrated numerically for 3-D bubbly flow applications, both with respect to the number of iterations and the computing time.
منابع مشابه
Development of Krylov and AMG Linear Solvers for Large-Scale Sparse Matrices on GPUs
This research introduce our work on developing Krylov subspace and AMG solvers on NVIDIA GPUs. As SpMV is a crucial part for these iterative methods, SpMV algorithms for single GPU and multiple GPUs are implemented. A HEC matrix format and a communication mechanism are established. And also, a set of specific algorithms for solving preconditioned systems in parallel environments are designed, i...
متن کاملA Comparative Study of Block Preconditioners for Incompressible Flow Problems
Problem statement: We consider the numerical solvers for the linearized Navier-Stokes problem. Both the Stokes problem and Oseen problems are considered. Approach: We used the Mark and Cell (MAC) discretization method to discretize the Navier-Stokes equations. We used preconditioned Krylov subspace methods to solve the resulting linear systems. Results: Numerical experimental results are perfor...
متن کاملThe effectiveness of HYMLS in the Jacobi-Davidson method for stability analysis of fluid flow problems
We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...
متن کاملNonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton's Method
For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposi...
متن کاملDELFT UNIVERSITY OF TECHNOLOGY REPORT 08-01 Fast and Robust Solvers for Pressure Correction in Bubbly Flow Problems
We consider the numerical simulation of two-phase fluid flow, where bubbles or droplets of one phase move against a background of the other phase. Such flows are governed by the Navier-Stokes equations, the solution of which may be approximated using a pressure-correction approach. Within such an approach, the computational cost is often dominated by the solution of a linear system correspondin...
متن کامل